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Abstract

The search for a universal solution of the equations of motion for a

satellite orbiting an oblate planet is a subject that has merited great

interest because of its theoretical and practical implications. Here, a

complete first-order perturbation solution, including the effects of the

J2 terms in the planet's potential, is given in terms of standard orbital

parameters. The simple formulas provide a fast method for predict-

ing satellite orbits that is more accurate than the two-body formulas.

These predictions are shown to agree well with those of a completely

numerical code and with actual satellite data. Also, in an appendix, it

is rigorously proven that a satellite having negative mechanical energy

remains for all time within a spherical annulus with radii approximately

equal to the perigee and apogee of its initial osculating ellipse.



1 Introduction

A characteristic feature of practical orbit prediction is that the engineer may deal with

numerous satellites in a great variety of orbits. Under these circumstances analytical relations

which can quickly approximate an orbit may be far superior to large numerical programs.

While many analytical models have been developed for the artificial satellite age, most are

not used in practical orbit prediction because they violate one or more of the following

principles:

• The method should provide a solution that is significantly more accurate than the

two-body solution.

• The real physical effects of the orbit should be easily distinguishable in the solution.

• The solution should be universal: it should be valid for all orbital parameters.

The problem of predicting the motion of a satellite perturbed only by the oblateness of the

planet has received considerable attention following the first launchings of artificial satellites

about the Earth. Some of the studies of this problem by means of general perturbation

theories are listed at the end of this paper. Techniques have involved expansions in powers

of y/Jl- averaging processes, the use of spheroidal coordinates, and the edifice of Hamiltonian

mechanics. It is not the intention of this present paper to compare the various methodologies

used. Suffice it to say that many researchers believe a solution which embodies all of the

above principles was not achieved (e.g., see Taff).

The basic procedure used in this paper to solve the differential equations of motion is

the perturbation technique known as the Method of Strained Coordinates. This technique

was first applied to the title problem by Brenner. Latta, and Weisfield. Using a mean orbital

plane to specify an arbitrary orbit, they were only able to obtain a partial solution (e.g., the

eccentricity was assumed small and initial conditions were not considered).



Here we use coordinates in the true orbital plane to cast the differential equations into a

simplified form, as was originally done by Struble.

2 Orbital Kinematics

Figure 1 shows the usual reference system of spherical coordinates (r, a, 0). The radial

distance r is measured from the center of the planet to the satellite S. The line O7 is in

a direction fixed with respect to an inertial coordinate system. The right ascension a is the

angle measured in the planet's equatorial plane eastward from the line O7. The declination

or latitude (5 is the angle measured northward from the equator. The position vector r of

the satellite in the spherical coordinate system is

r = r(cosQ cos $)hi + r(sin a cos/?)b 2 + r(sin l3)b 3 (1)

where (bi,b2,b3) are orthonormal base vectors fixed in the directions shown.

We can also locate the satellite by its polar coordinates (r. 6) within a (possibly rotating)

orbital plane that instantaneously contains its position and velocity vectors. Here 6 is the

argument of latitude, i.e., the angle measured in the orbital plane from the ascending node to

the satellite. The orbital plane is inclined at an angle i to the equatorial plane and intersects

the equatorial plane in the line of nodes, making an angle Q with the 0~) line.

We introduce another orthonormal set of base vectors (Bi.B 2 ,B 3 )
which move with the

satellite so that Bi is in the direction of the position vector r. B 2 is also in the orbital plane.

and B3 = Bi x B 2 . The basis (bi, b 2 . b$) may be transformed into the basis (Bj. B 2 . B3) by

a succession of three rotations. First the basis (b!,b 2 .b3 )
is rotated about the b3 direction

by the angle ft, next the basis is rotated about the new 1-direction by the angle i, and

finally the basis is again rotated about the new 3-direction by the angle 6. The two sets of

base vectors are related by the product of the rotation matrices representing each successive



rotation (as explained in the book by Danielson^

B 2

B 3

cos 6 sin#

— sin cos 6

1

1

cos i sin i

— sin i cos i

cos n sin n
sin ft cos ft

1

b 2

b3

or

B,

B 2

B3

cos 6 cos ft — sin 6 cos i sin ft cos sin ft -f sin # cos ? cos ft sin sin ?

— sin 6 cos ft — cos 6 cos i sin ft — sin 9 sin ft 4- cos 6 cos z cos ft cos 6 sin i

sin i sin ft — sin z cos ft cos i

(2)

bi

b 2

b3

The position vector r has only one component in the rotating basis:

r = rB, (3)

Using the first of equations (2), we obtain the components of r in the fixed basis:

r = r(cos#cos ft — sin 6 cos i sin ft)^

+ r(cos#sin ft + sin 6 cos ? cos ft)b 2 + r(sin ^sin ?)b3 (4)

Equating the components of equations (1) and (4). we can obtain the following relations

among the angles (a, j3) of the spherical coordinate system and the astronomical angles

(i,ft,0):

sin 3 = sin #sin ? (5)

cos 3 — cos 6 sec( q — ft

)

The velocity dr/dt of the satellite is obtained by differentiating (3) with respect to the

time t:

dr dr JR,
(6)

dr dr rfBj

-di
= Tt

Bi + r^r
Since the orbital plane must contain the velocity vector, we have to enforce

dB,

dt
B, = (7)

Substitution of equations (2) into equation (7) leads to a relationship which uncouples the

equations for ft(0) and i{6):

dQ tantf di

(8)
dO sin? dO



The velocity (6) can then be written

dv <fr d6 „ .di\ n— = —B! + r— 1 + tan<9cot?— B 2

dt dt dt \ dO
(9)

In the following part of this paper, we will obtain expressions for r(0), i{9), fi(0), and

dt/dO(0). The position and velocity vectors of the satellite then may be calculated from

the formulas in this section. The classical orbital elements p, e, and u; are the semilatus

rectum, eccentricity, and argument of perigee of the instantaneous (osculating) conic section

determined by the position and velocity vectors. If needed, p(9), e(0), and u>(9) can be

obtained from our solution r(9) and dt/d9(9):

V-
GM {%)

t cos(9 — u:) = 1

r

esin(»-u.-) = ^(J
3 Equations of Motion

The expressions for the kinetic and potential energies per unit mass of a satellite orbiting

around an oblate planet are respectively:

2 /,i\2 /,\2"
T = \ %)+*(%)+<>«*>$

V = - GM 1 +
J2R 2

2r 2
(l -3sin 2

/3)

(10)

11)

where G is the gravitational constant, M is the mass of the planet, R is the equatorial radius

of the planet, and J2 is the constant coefficient of the spherical harmonic of degree 2 and

order in the planet's gravitational field. Substitution of these equations into Lagrange's

equations

d 9(7- -V) d

S^Ff-^ (r - ,) = ° 1 = r,a, or



results in the following equations of motion:

d>r (d3\
2

2,/^V 9Y__ r (_j _ r cos^^-j = -— (12)

i^s^-^dr-s <i3)

Initial conditions are established by requiring that at the initial time to the orbital pa-

rameters of the usual two-body orbit, the conic section determined by the initial position and

velocity vectors, are known. The actual orbit is then tangent to this initial instantaneous

conic section at to (see Figure 1). Equating the initial position and velocity vectors given by

equations (3) and (9) to the two-body expressions, we obtain

r«o) = — ^ :, (14)
1 + e cos(# - u;

)

dr e o h o s\n{0o - uj ) ,...
-r;(to) = (Id
at p

dO h
-«o) = Tr -1—

-

(16)
dt-> rl 1 + tan0o coU o g(0o ;

Wo) = io (17)

n(^ )
= o (is)

Here h = yJGMpo is the initial value of the satellite's specific angular momentum about the

center of the planet, and the subscript on a symbol denotes that the parameter is evaluated

at the initial time t .

We immediately have two integrals of the equations of motion:

T + V = constant (19)

r
z
cos^ 8— = constant (20)

dt
v ;



Equation (19) simply states that the mechanical energy of the satellite remains constant.

Now, from equations (1) and (16)

.2 „_2 da dr
r cos 0— = r x — • b 3 = h cos z (21)

dt
'

dt

Equation (21) simply states that the component along the polar axis of the specific angular

momentum of the satellite remains constant. Inserting equations (3) and (9) into equation

(21), we obtain

di r m<s if di\
(22)

dt r cos if dx— = 1 + tan 6 cot z
—

dv h cos z \ dB

This allows the independent variable to be changed from t to 6.

Letting u = po/r, and using equations (5). (21). and (22). we can rewrite the remaining

equations of motion ( 1 2)— ( 13):

di — 2J u sin 6 cos 8 sin i cos
2

i

d6 ' -^- + 2Jus\n 2 6cos 3
i

COS I

(23;

d2 u cos
2

? J cos*
+ w = —-r- + r

d0< c*

d 2
u

2 : r fa
u
2
(\ - 3sin

2
0sin

2
?) + 2u— sin cos 0(1 -3 cos

2
?;

du
Au —— sin

2
6 cos

2
z'
— 2 I —

)
sin

2
6 cos

2
z

d6

AJ 2 us'm 3 6cos6
i

du
. 2 d f du\

2
u— cos 6/(2 + sin z) + — I u— I sin 6* cos ?

The terms in (24) with d2 u/d9 2 can be combined, yielding the equivalent equation

d2
u [ cos

2
i J cos 2

i .
, . „ 9 .

^7 + u =
\
— + —

—

\-

u
(
] + sin ^ 7 cos

-
- 3 ))

du o / c/u \ o t ,

+2u— sin cos 0(1 -3 cos
2
?) -2 — sin

2
cos

2
?]

dv \ du I

+
4J2

izsin
3 0cos6 ?'

2 2 du 2 I du \ 2
u sin p cos i'

— u— cos 6(2 + sin z) — I
—

J
sin 6 cos z

u0 \ d6 I

f 4 J?? sin
2
6 cos

4
? AJ 2 u 2

sin
4

cos 8
?

-5-1 + + :

[24)

(25)



Here we have introduced the shorthand notation c = cos?o, 5 = sinz . J = SJ2R2
I~Pq-

4 Perturbation Procedure

The differential equations (23)-(24) are coupled by the nonlinear terms and apparently

cannot be solved analytically. If we expand the right sides of (23) and (25) in a Taylor series

expansion in powers of J and retain only terms up to order J 2
, the equations simplify to

di —2Jus'm6cos6s\nicos 3
i 4 J 2

u
2
sin i cos

7
i . , - „ _,. T o. .__>— = = + sin

3
9 cos 6 + 0(J3

) (26)
dv cl c4

d2u cos 2
1 J cos 2

7 ( —Aus'm 2
6 cos

4
i 9r . 9 „.„ ,. „.,

m + u =— +—r-{ 5 + « P + sin '( J cos
'

- 3
)]

+ 2u-^sin0cos6»(l - 3 cos
2

?) -2 ( -^ ]
sin

2
flcos

2
?) (27)

do \ dv J )

4J 2 us\n
2 Ocos6

1 ( 9r „ . , „ „ , ... 3u sin
2 #cos 4

i

+ \u 2
[-\ +3sin 2

0(l -2cos 2
?) +

c4 I cz

+ U-377 sin cos 0[7 cos
2

? - 5] + (
~

|
sin

2 0cos 2
?i + 0{J 3

)

dv \ dv

J

J

Here the term in the symbols indicates that, for all sufficiently small J, the error is less

than a constant times J 3
. The equations (26)— (27) are identical to those used as the starting

point in the analysis of Eckstein, et al.

It is reasonable to expect that the solution for u will be arbitrarily close to the two body

solution. 1 + tQCOs(6 — u; ), when J is close to zero. This assumption is consistent with

letting

u = \ + e cosy + Jui + J 2
u 2 + ... (28)

y =6-u + Jyi + J
2

y 2 + ... (29)

i = i + JU + J 2
*2 + • • • (30)

An algorithm for the perturbation procedure is:

Let n = \

Substitute expressions (2b)-(30) into the equations of motion (26)-(27)



Equate the coefficients of J
n

Choose the arbitrary constants so secular terms will not arise.

Solve for the n th order solution

Satisfy the initial conditions (lj)-(18)

Iterate on n

The calculations were carried out with the symbolic manipulation program MACSYMA.

In this paper we only briefly outline these calculations; for more details see the theses of

Sagovac and Snider.

Beginning by substituting equations (28) and (30) into (26), and equating the terms

multiplied by J, we obtain

J-
= -scsm20 - ^p sm(y + 20) + ^sm(y - 20) (31)

A solution to this equation is

i, = ^ cos 20 + ^cos(y + 20) + ^cos(y - 20) + h\ cos(2y - 20) + K2 (32)2d 2

The last two terms may be added because they are to lowest order homogenous solutions

to equation (30). The term multiplied by the constant K\ was added to eliminate secular

terms in i 2 \ note that differentiating this term with respect to produces terms multiplied

by J, from equation (29). The constant K 2 was added to satisfy the initial condition (17).

which implies that i\(0o )
= so

K2 = -— cos 20Q — cos(30o - w )
- "—r- cos(0o + u; )

- A'i cos 2cc?o2o 2

Substituting equations (28)— (30) and (32) into (27). and equating terms multiplied by J

yields

tPu, 3.s
2

„ / ,^ 2 \ 1

20
cPu-i 3s 2

, / 5s 2
\ 1

.

oo o,

-Jgt
+ «i = 1 "

~Y + £ o I

-— + 1 + jl(2 + 5eJ) 5
2 - 2e

2

]
cos

2 i - 2

+ ^{-9s 2 + 8) cos2y + ^l 11^ - 6 )
cos (</ + 20) + -t~(35

2 - 2)cos(2y + 20) (33;
4 3 24



+
o c

2sK

2

cos(2y - 26) - + e ('2—-- +4- 5s
2

) cosy + eo
<fyl .

siny
c \ av ) d6 2

In the above equation, the cosy and siny terms would produce secular terms #siny and

6 cosy in u\. The choice dy\/d6 = 5s 2
/2 — 2 will eliminate these possibilities. Integrating

yields

(34)Ifi = ( ~Y
~ 2

J
(* " tfo) + A'3 [sin(2y - 20) + sin 2u;

]

The term multiplied by A'3 was added to eliminate secular terms in u 2 - The constant terms

in (34) were added to satisfy the initial condition y(0o ) = 6 — u; .

A solution to lowest order of equation (33) is then

ui«l-T + 4 U^- + 1
j
+ ^[--s2 (2 + 5e ) + 2e

2
]
cos 2d

eo
+ -^(9s 2 - 8) cos2y + ^(-l^ 2 + 6)cos(y + 20) + ;£(-3s 2 + 2) cos(2y + 26) (35;

12 24 24

+
8 c

2sA'2
cos(2y - 2d) + A'4 cos(y - 26)

+ A'5 cos(y - O + *>'o) + A'6 sin(y - 6 + u;
)

The term multiplied by K4 was added to eliminate secular terms in u 2 - The terms multiplied

by A'5 and J\'e were added to satisfy the initial conditions (14)— (16).

With all terms in place to deal with secular terms, the calculations are continued by

substituting equations (28)-(30). (32). (34). and (35) into (26) and equating terms multiplied

by J 2
:

sce 2 (\5s 2 - 14)'di-i

~d~6

A'i + sin(2y-20) + . (36)
24(5s 2 -4)

We have for brevity only indicated on the right side of equation (36) the term that would

produce secular terms in i 2 - Removal of this term by making its coefficient zero determines

A']. Equation (36) is then integrated to determine i2 .

Continuing the procedure by equating the terms multiplied by J 2
in the expansion of

equation (27) determines y 2 . A'3 . and A'4 . Final values of all the constants are listed in

Appendix I.

10



Knowing the solution for z(0), we can determine 0,(6) by integrating equation (8) and

applying the initial condition (18). The angle 0. which increases continuously from an initial

value #o, rnay be related to the time t by numerically integrating (22).

5 Solution

Here we assemble the complete solution:

3s
2

5s'
r = p /|l + eo cosy-f J[l-— + ejll-—

j
+ —(-(2 + 5ejy + 2eJ)cos2^

2 2

+ ^(9s 2 - 8) cos 2y + ^(-1 Is
2 + 6) cos(y + 20) + ^(-3s 2 + 2) cos(2y + 20)

12 24 24

+ -^(3s
2 -2)cos(2y-20)

o

e [15(2 + e
2
)5

4 - 14(4 + c
2
)s

2 + 24] sin [f (5s
2 - 4)1 sin[0 + w

]

12(5s2 -4)

efc
2 (15s2 - 14) sin [f (5s

2 - 4)1 sin [2^ - y (5s
2 - 4;

6(5s2 -4)

2 2 2

+ ^(3s 2 - 2) cos(y - 30o + 3-*) - ?SL cos(j, - 50o + 3^-
)

24 Id

e
2
52

7— cos((/ - O + 3^o!
10

(37)

+ ^(3s 2 - 2) cos(y - 20o + 2u; )
-^4 o

cos(y - 40o + 2u>
]

^(s 2 + l)cos(y + 2^o) + i[(-2 + 5e
2
)s

2 - 2e
2

]
cos(y + O + w

)

4 o

1

+ -[(6 + 5e
2
)s

2 - 4(1 4- e
2

)]
cos(y - O + **)

+ ^[-(14 + 5e
2
)s

2 + 2e
2

] cos(y - 30o + uq)

2 2

+ ^(9s 2 - 4) cos(y + 30o - a*) + ^(-7s 2 + 6) cos(y 4- O - u*>)
4o o

+ 77(-5s 2 + 4)cos(y-0o -^o )

lo

+— (2s
2 - 1 ) cos(y + 20o ) + t(" 3s2 + ]

)
cos^ ~ 2 ^o) + t(" 3s2 + 2) cos y

£0

4

£0

4

+e s
2
cos(0o + uq) + ~- cos(30o - w ) + s

2
cos 20o]} + p O{ J 2

, J
3
0)

11



y = e-uo + j(^--2\(6-e
)

+
Je 2

f (-75s
6 + 260s 4 - 296s 2 + 112) sin [f (5s

2 - 4)] cos [2w - f (5s
2 - 4)]

24(5s 2 -4) I (5s 2 -4)

+J0s 2 (-15s 2 + 14)(15s
2 - 13) cos 2^o I + J 2

0J^(15s
2 - 13) cos(0o + w

)

2 2

+ ^-(15s 2 -13)cos(30o -^o ) + 7r(15s
2 - 13)cos20o

6 2

+ ^[5(9e 2 + 34)s
4 + 4(9e

2 - 34)s
2 - 56c

2

]} + 0(J\ J 3
0) (38)

?o + scj\ - cos 20 + ^ cos(y + 20)
2 6

en e
2 (-15s 2 + 14) sin ^ (5s

2 -4) sin

+ -^ cos(y - 20) +
J6 I?.**

2uJo _ 21 (5s
2 - 4)

12(5s 2 -4

-i cos 20o - j cos(30o - -o) - y cos(0o + u> ) 1 + 0(J 2
, J

3
0; '39:

n = n + cj O - + \ sin 20 - co sin y + ^ sin(y + 20) - ^ sin(y - 20) - - sin 20o
1 I I

+e sin(0o - u> )
- — sin(30o - u; )

- — sin(0o + u?
]n /

+
CJ C

2 |-2(15s
4 - 45s 2 + 28) sin [f (5s

2 - 4)] cos [2^ - f (5s
2 - 4)

12(5s 2 -4) (5s 2 -4)

+70s 2
(15s

2 - 14) cos 2^o| + cJ 2
6 -e s

2
cos(0o + w )

- ^~ cos(30o - ^
;

-s 2
cos 20o + ^(7s 2 - 4) + i(-s 2 + 6) k + o(j\re) (40)

1 /-e
f r(-3^ + '>)

* = U+- r
2 1+J^ —^cos20 + eo (s

2 -l)
ft ^0o l L 2

12



e (-4s 2 + 3) , „ e (-2s 2 + l)
cos y + -^ 1 cos{y + 20) +

° l j

cos(y - 20)

e^ J (15^-14)sin f (5s
2 -4) sin 2u,' - <? (5s

2 - 4

12(5s 2 -4)

+s 2 - 1 + - cos 20o + -~- cos(30o - w ) + -V cos (^o + u;
)

(41

\do + ^-0{j 2
,j

2
e)

J "0*0

In obtaining the equations (37)— (41 ), use has been made of trigonometric formulas

to simplify terms containing the factor 5s 2 — 4 in the denominator. In the form given,

these terms can clearly be seen to approach a finite limit at the ''critical inclination'*

i = sin
-1

\/4/5 = 63°26' or 116°34'. Hence the solution is actually valid for all values

of io. If |?o
— sin

-1
v/4/5| < J, the formulas (37)— (41 ) can still be used by letting bs 2 — 4 = J,

or the limiting forms for io —> sin
-1

v/4/5 can be used.

To check the solution, we can see if the specific mechanical energy (18) of the satellite

remains constant. Substitution of the solution (36)-(37) into equation (10) plus (11) yields

GM(l-e 2
)

GMJ2R 2
(\ -3 sin

2 3 ) GM
T + V = K- "- ——= ^ + O(J')

2p 2r£ p

The right side is easily recognized as the value of the specific mechanical energy at the initial

time t .

As a further check on the solution, we can see if it reduces to our previous results for

equatorial and polar orbits, obtained by completely separate derivations (Danielson and

Snider, 1989). Setting 2o = and using the independent variable o. measured from the line

07, we find that equations (37)— (41 ) reduce to equations (18)-(22) of our previous paper.

Setting i = tt/2 and using the expansion cos(y + Jk) % cos y — Jks'my, we find that

equations (37)— (41 ) reduce to equations (38)— (41 ) of our previous paper.

Comparing the terms in the O-symbols, we see that the relative error in equation (41)

may be greater than that of equations (37)-(40). Since the underlined terms in equations

(37)-(40) are of this same order of magnitude, we can drop the underlined terms except

when (37)—(38) are used to calculate r in equation (41). The relative error of our solution

13



will then still be of order (0 - o )J
2

.

If we retain only the two-body solution, the relative error terms will be of the order

{6 — 6 )J . Here the error in our solution, as compared to the exact solution of the equations

of motion, should be of the order J times the error in the two-body solution (for an Earth

satellite J < .0015).

6 Comparison of Perturbation, Two-Body, Numerical, and Mea-

sured Solutions

In this section we compare the preceding perturbation solution, the two-body solution, a

completely numerical solution of the differential equations, and actual measured satellite

data; for more comparisons see the thesis of Krambeck. The difference between the position

vector r determined by the numerical integration code or measured data and the position

vector rre f calculated from our perturbation solution or the two-body solution is the error

Ar:

Ar = r - rref

If the errors (Ar. A#, A?, Aft) in the orbital parameters (r.#. ?, Q) are small, we can estimate

Ar from equation (4) and the linear approximation

A, **Ar+£A«+£* + £*« (42,
Or 39 oi OYi

It is customary to decompose Ar into components (^i , <5 2 . ^3) along the moving triad (Bi.B 2 ,B 3 ):

Ar = <5]Bi 4- 6 2B 2 + <53B 3

The component 8\ is called the radial error, 6 2 is the down track error, and <53 is the cross

track error. Applying (42) to equation (4), and expressing the base vectors (bi.b 2 .b3 )
in

terms of (B!,B 2.B 3 ), we obtain the following approximations:

6i»Ar. 62 % r(A0 + cos?'Afi). 63 «r(sin0At - cosflsiniAft) (43)

14



We obtained the numerical integration code UTOPIA from the Colorado Center for

Astrodynamics Research located on the campus of the University of Colorado. The code

was specialized to the differential equations used in this paper. We compared the solutions

for an earth satellite with the following initial conditions:

r = 7,386.18 km

e = .003991

0o = 104.05°

u; = 224.38°

i = 90.03°

Q = 322.63°

t =

These initial conditions represent an essentially polar orbit at an altitude of approximately

1000 kilometers and period about l| hours. For this satellite the perturbation and numerical

orbits match extremely well while the two-body orbit is grossly erroneous. The magnitude of

the error in r is shown in Figure 2. Note that the relative error in our perturbation solution

is 2.8J 2
(0 — # )i and that this error is 1.1J times the error in the two-body solution.

We obtained measured satellite data from the First Satellite Control Squadron located

at Falcon Air Force Base. Colorado. A near earth satellite processed the following initial

conditions:

r = 7, 776.58 km

e = .0003071

O = 149.14°

u-'o = 9.57°

i = 98.81°

15



n = 37.10°

to = 0000Z 26 July 1990

Again, the perturbation orbit is far superior to the two-body orbit. The radial, down track.

and cross track errors (61,62,63) are shown in Figure 3. Note that although the perturbation

solution produces only a small improvement in the radial error, this error is negligible in

comparison to the down track error.

7 Conclusions

Our solution embodies the principles outlined in the introduction. The relative error of our

solution is of order (6 — 6 )J 2
, which is a factor of J times the relative error of the two-body

solution; our solution loses its validity after an angular change (6 — 6 ) of order 1/J 2
, which

is a factor of j longer than the interval of validity of the two-body solution. Secondly, our

solution is in terms of classical orbital elements; no transformation to an alternative non-

physical set of elements is required. Finally, our solution is free of singularities for all values

of the initial orbital parameters, including elliptic, parabolic, and hyperbolic orbits.

Our formulas should agree closely with satellite orbits whose dominant perturbation is

the planet's oblateness. Of course, the effects of higher-order terms in these expansions,

higher-order terms in the planet's potential, and of other perturbation forces may also be

important. The formulas will have to be amended to include these additional effects.

APPENDIX I: Values of the Constants A'l-A'e

cse 2 (-15s 2 + 14;
Aj —

24(5s 2 -4)

1- sc on sce o ton \
sce° f0 \ .

cseg(15-s
2 - 14)

A 2 = -—cos 2^o — cos(30o -u> ) — cos(0o + ^
) + .,.. ,

--— cos2^2d I 24(5s'' — 4)

e§(-75s6 + 260.5
4 - 296s 2 + 112)

A 3 =
48(5s 2 -4) 2
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A4 = e
[15(e

2 + 2).s
4 -14(e 2 + 4).s

2 + 24]

24(5s2 -4)

K5 = ^(-95 2 + 8)cos(2^-2^o) + ^t(35
2 -2)cos(4^-2^o)

12 24

e e
2

-(e 5
2 + A'4 ) cos(0o + ^o) + -^(s

2 - 2) cos(30o - u; ) + -^(-3s 2 + 2) cos 2u>
h 8

-^[5(2 - e
2
)6

2 + 2e
2

] cos 26 + ^(15e 2 + 18) 5
2 - (eg + 1)

2 2

K6 = -f ^(6 5
2 -5)sin(2^ -2^o) + ^(-3^ 2 + l)sin(4^-2u;o)

D 12

1 eo
+ -[e (--s

2 + 1 ) + 2A4 ]
sin(0o + w ) + ^(3s2 - 2) sin(0o - ^o)

e e
2

1

+ -^(-7s 2 + 2) sin(30o - u; ) + -f{s
2 + 1 ) sin2u; + -[-(5e 2 + 2)s

2 + 2eg] sin 20o
8 4

APPENDIX II: Rigorous Bounds on the Orbit

It follows from (10)-(12) that

„, „ 1 (drY r d 2
rr+V =2A + 5^ —

(1 — 3 sin j,
2r 4 r .

This can be rewritten in the form

2"

rfr

= 4(7+ \> + 26U/ +
GMJ2ff

;3sin
2 ^- 1)

from whence it follows that

d_

dr

dr

di

Integrating from r(t ) to r(t) yields

r >

f
»V < 2(r + vy + 2GMr - >™ML _

ft g + iMMI

It follows that

< 2(T + V>2 + 2GMr - h\[\ - ^-] (44
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When T + V < 0, the quadratic polynomial on the right side of (44) has the roots (exact

values can be found from the quadratic formula)

Tmin = T^-[l + 0(J2 )} ,
rmax = -^-[1 + 0(J2 )}

1 + e 1 — e

Hence a satellite having negative mechanical energy remains for all time within the spherical

annulus r^n < r < r^x. Since the position vector is bounded, we can invoke the recurrence

theorem; i.e., the satellite will come as close as desired to its initial position in a sufficiently

long period of time (as shown by Poincare). Furthermore, we are guaranteed of the validity

of supressing secular terms to describe the orbit via perturbation analysis.
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Figure 1: Orbital geometry.

Figure 2: Comparison of perturbation, two-body, and numerical orbits.

Figure 3: Comparison of perturbation, two-body, and measured orbits.
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